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Abstract. A ncural network works as an associative memory device
if it has large storage capacity and the quality of the retrieval is good
cnough. The learning and attractor abilitics of the network both can
be mcasured by the mutual information (M1), between patterns and re-
trieval states. This paper deals with a scarch for an optimal topology.of a Hebb network, in the sense of the maximal MI. We use small-world
topology. The connectivity y ranges from an extrenely diluted to the
fully connected network; the randomness w ranges from purely local to
completely random neighbors. It is foundthat, while stability implics an
optimal MI(7,w) at Yopt(w) — 0, for the dynamies, the optimal topology
holds at certain Topt > 0 whenever 0 ≤ w< 0.3.

1 Introduction

The collective properties of attractor neural networks (ANN), such as the ability
to perform as an associative memory, has been a subject of intensive research
in the last couple of decades[1]. dealing mainly with fully-connected topologies.
More recently, the interest on ANN has been renewed by the study of more real-
istic architectures, such as small-world [3] or scale-free [13] models. The storage
capacity a and the overlap m with the memorized patterns are the most used
measures of the retrieval ability for the Hopfield-Hebb networks[1]Comparatively
less attention has been paid to the study of the mutual information (MI) be-
tween stored patterns and the neural states[5][6], although neural networks are
information processing machines.
A reason for this relatively low interest is twofold: on the one hand, it is easier

to deal with the global parameter mo.E], than with M1[p(0|E)]. a function of
the conditional probability of neuron states o given the patterns &. This can
be solved for the so called mean-field networks which satisfy the law of large
numbers, hence MI is a function only of the macroscopic parameters m, and the
load rate a = P/K (where P is the number of uncorrelated patterns, and K is

the neuron connectivity). On the other hand, the load a is enough to measure
the information if the overlap is close to m~ 1, since in this case the information

carried by any single binary neuron is almost 1 bit. It is true for a fully-connected
(FC) network, for which the critical aFC~0.138 [4], with mEC~0.97 (with
sharp transition to m → 0 for larger a > a): in this case, the information rate

about iF~ 0.131, as can be seen in the left panel of Fig.1. There we show the
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Fig.1. The overlap m and the information i vs a for different architectures: fully-

connected,FC = 1.0 (left), moderately-diluted, yMD = 10-2 (center) and extremely-

diluted, ED = 10-1 (right). Symbols represents simulation with initial overlap mº =1

and |J| = 40M, with local (stars, w = 0.0), small-world (filled squares, w= 0.2),

and random (circles, w = 1.0) connections. Lines are for theoretical results: solid,

w=0.0, dotted, w = 0.2, and dashed, w= 1.0. In left, dashed line means averaging the

simulation.

overlap (upper) and information for several architectures. However, in the case of

diluted networks the transition is smooth. In particular, the random extremely

diluted (RED) network has load capacity aRED~ 0.64[8] but the overlap falls

continuously to MRED0,m which yields null information at the transition,

¡RED0.0, as seen in right panel of Fig.1 (dashed line). Such indetermination

shows that one must search for the value of amar corresponding to the maximal

information MImaz = MI(Qmar), instead of o.

We address the problem of searching for the optimal topology, in the sense

of maximizing the mutual information. Using the graph framework [2], one can

capture the main properties of a wide range of neural systems, with only 2

parameters: = K/N, which is the average rate of links per neurons, where

N is the network size, and w, which controls the rate of random links (among

all neighbors). When y is large, the clustering coefficient is large (c~ 1) and

the mean-length-path between neurons is small (1 ~ In N), whatever w is. When

is small, then if w is too small, c~ 1 and 1~ N/K, but if it is about

w~ 0.1. the network behaves again as if 7 ~ 1, with c~ 1 and 1~ In(N).

This region, called small-world (SW), is rather usefull when one is interested

to built networks where the information transmition is fast and efficient, with

high capacity in presence of significant noise. but do not wants to spent too

much wiring.Small-world networks may model many biological systems [12]. For
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we found there is an intermediate optimal Yopt, for any fixed 0 ≤ w < 0.3. This

can be understood regarding the shape of the attractors. The ED
 waits much

longer for the retrieval than more connected networks 
do, so the neurons can

be trapped in spurious states with vanishing information. We found there is an

intermediate optimal Topt. whenever the retrieval is truncate
d, and it remains

up to the stationary states.

Both in nature and in technological approaches to neural devices, dynamics

is an essential issue for information process. So, an opti
mized topology holds in

any practical purpose, even if no attemption is payed to wiring or other energetic

costs of random links. The reason is a competition between the broadness (larger

storage capacity) and roughness (slower retrieval speed) of the attraction basins.

We believe that the maximization of information respect to t
he topology

could be a biological criteria (where non-equilibrium phenomena are relevant) to

build real neural networks.We expect that the same dependence should happens

for more structured networks and learning rules.
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