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Abstract. A ncural network works as an associative memory device
if it has large storage capacity and the quality of the retricval is good
cnough. The learning and attractor abilitics of the network both can
be measured by the mutual information (MI), between patterns and re-
trieval statcs. This paper deals with a scarch for an optimal topology.
of a Hebb network, in the sense of the maximal MI. We usc small-world
topology. The conncctivity v ranges from an cxtreincly diluted to the
fully connected network; the randomness w ranges from purcly local to
completely random neighbors. It is found that, while stability implics an
optimal MI(7y,w) at Yopu(w) — 0, for the dynamics, the optimal topology
holds at certain Yopt > 0 whenever 0 < w < 0.3,

1 Introduction

The collective properties of attractor neural networks (ANN), such as the ability
to perform as an associative memory, has been a subject of intensive research
in the last couple of decades(1]. dealing mainly with fully-connected topologies.
More recently, the interest on ANN has been renewed by the study of more real-
istic architectures, such as small-world [3] or scale-free [13] models. The storage
capacity a. and the overlap m with the memorized patterns are the most used
measures of the retrieval ability for the Hopficld-Hebb networks[1]Comparatively
less attention has been paid to the study of the mutual information (MI) be-
tween stored patterns and the neural states([5][6], although neural networks are
information processing machines.

A reason for this relatively low interest is twofold: on the one hand, it is easier
to deal with the global parameter m|o. €], than with A/I[p(@|€)]. a function of
the conditional probability of neuron states & given the patterns €. This can
be solved for the so called mean-field networks which satisfy the law of large
numbers, hence M1 is a function only of the macroscopic parameters m, and the
load rate @ = P/K (where P is the number of uncorrelated patterns, and K is
the neuron connectivity). On the other hand, the load a is enough to measure
the information if the overlap is close to m ~ 1, since in this case the information
carried by any single binary neuron is almost 1 bit. It is true for a fully-connected
(FC) network, for which the critical af¢ ~ 0.138 (4], with mf¢ ~ 0.97 (with a
sharp transition to m — 0 for larger @ > a,): in this case, the information rate is
about iF'¢ ~ (.131, as can be seen in the left panel of Fig.1. There we show the
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Fig.1. The overlap m and the information i vs a for different architeclures: fully-
connected, 7€ = 1.0 (left). moderately-diluted, FMP = 1072 (center) and extremely-
diluted, ~EP = 107 * (right). Symbols represents simulation with initial overlap m° =1
and |J| = 40M, with local (stars, w = 0.0), small-world (filled squares, w = 0.2),
and random (circles, w = 1.0) connections. Lines are for theoretical results: solid,
v = 0.0, dotted, w = 0.2, and dashed, w = 1.0. In left, dashed line means averaging the

sirnulation.

overlap (upper) and information for several architectures. However, in the case of
diluted networks the transition is smooth. In particular, the random extremely
diluted (RED) network has load capacity aRED ~ 0.64(8] but the overlap falls
continuously to mfEP ~ 0, which yields null information at the transition,
1#ED . 0.0, as seen in right panel of Fig.1 (dashed line). Such indetermination
shows that one must search for the value of a,,,, corresponding to the maximal
information M1,,., = MI(Q,,,.). instead of a..

We address the problem of searching for the optimal topology. in the sense
of maximizing the mutual information. Using the graph framework [2]. one can
capture the main properties of a wide range of neural systems, with only 2
parameters: 7 = K/N. which is the average rate of links per neurons, where
A is the network size. and w. which controls the rate of random links (among
all neighbors). When 4 is large, the clustering coefficient is large (¢ ~ 1) and
the mean-length-path between neurons is small (I ~ In N'), whatever w is. When
~ is small. then if w is too small, ¢ ~ 1 and | ~ N/, but if it is about
w ~ 0.1. the network behaves again as if % ~ 1, with ¢ ~ 1 and [ ~ In(N).
This region, called small-world (SW), is rather usefull when one is interested
to built networks where the information transmition is fast and efficient, with
Ligh capacity in presence of significant noise. but do not wants to spent too
much wiring.Small-world networks may model many biological systems [12]. For
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instance, in a brain local connections dominate in intracortex. while there are a
few intercortical connections [11].

In Fig.1 we show the overlap (upper) and information for several architec-
tures. In the left panel, it is seen that the maximum information rate, i =
MI/(K.N), of FC network is about i€ = 0.135. while in the right panel,
we show extremely-diluted networks (ED). The RED network (w = 1.0) has
{RED ~ 0.223. The right panel of Fig.1 plot also the overlap and the information
for the local extremely diluted network (LED. w = 0.0), with i,';"‘f' = (.0855, and
a small-world extremely diluted network (SED, w = 0.2). with i;f,’,";f) = 0.165.
We see that the ED transitions are smooth. The central panel of Fig.1 plot mod-
erately diluted (MD) networks, which are commented later. Theoretical results
fit well with the simulations, except for small w. where theory underestimate it.
Previous works about small-world attractor neural networks [10] studied only
the overlap m(a). so no result about information were known.

Our main goal in this work is to solve the following question: how does the
maximal information, i,,,.(7.w) = i(@mari,w) behaves with respect to the
network topology? To our knowledge, up to now. there were no answer to this
question. We will show that, near to the stationary retrieval states, for every
value of the randomness w > 0, the extremely-diluted network, performs the
best. 7., — 0. However, regarding the attractor basins. starting far from the
patterns, the optimal topology holds for moderate Yopt- For instance, if transients
are taken in account, values of w ~ 0.1 lead to an optimal i,1(7) = tymar(Yopt. w)
with Yop ~ 1072,

The structure of the paper is the following: in the next section we review the
information measures used in the calculations: in Sec.3. we define the topology
and neuro-dynamics model. The results are shown in Sec.d, where we study
retrieval by theory and simulation (with random patterns and with images);
conclusions are drawn in last section.

2 The Information Measures

2.1 The Neural Channel

The network state at a given time ¢ is defined by a set of binary neurons, o! =
{o] € {£1}.i = 1...,N}. Accordingly. each pattern £* = {€" € {*1},i =
1,.... N}, is a set of site-independent random variables, binary and uniformly
distributed: p(€ = £1) = 1/2. The network learns a set of independent patterns
(&% = 1,:,P)

The task of the neural channel is to retrieve a pattern (say, €) starting from a
neuron state which is inside its attractor basin, B(€). i.e.: 0” € B(€) — o> =~ €.
This is achieved through a network dynamics, which couples neighbor neurons
0,.0, by the synaplic matriz J = {J, ,} with cardinality |J| = N x K.

2.2 The Overlap

For the usual binary non-biased neurons model, the relevant order parameter is
the overlap between the neural states and a given pattern:
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where r is a normalized random variable and T is the temperature-like environ-
mental noise. In the case of symmetric synaptic couplings, Ji; = Jji, an cnergy
function H, = — Z('-;) Jiyoi0; can be defined, whose minima are the stable
states of the dynamics Eq.(5).

In the present paper, we work out the asymmetric network by simulation
(no constraints J;; = Jji). The theory was carried out for symmetric networks.
As it is scen in Fig.1. theory and simulation shows similar results, except for
Jocal networks (theory underestimate @maz. Where the symmetry may play some
role. We restrict our analysis also for the deterministic dynamics (T = 0). The
stochastic macro-dynamics comes from the extensive number of learned patterns,
P =akK.

4 Results

We studied the information for the stationary and dynamical states of the net-
work were studied as a function of the topological parameters, w and 5. A sample
of the results for simulation and theory is shown in Fig.1, where the stationary
states of the overlap and information are plotted for the FC, MD and ED ar-
chitectures. It can be scen that information increases with dilution and with
randommess of the network. A reason for this behavior is that dilution decreases
the correlation due to the interference between patterns. However, dilution also
increases the mean-path-length of the network, thus, if the connections arc lo-
cal, the information flows slowly over the network. Hence, the neuron states ¢an
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be eventually trapped in noisy patterns. So, Imar is small for w ~ 0 even if
-4
=107

4.1 Theory: Stationary States

Following to the Gardner calculations(8], at temperature T=0 the MFN approx-
imation gives the fixed point equations:

m = erf(m//ra), (6)
X = 2¢(m/Vra)/Vra; (7)

r= Y ax(k+ DX, ap = Tr(C/K)*?) ®)

k=0

with erf(z) = 2 ”I p(2)dz, p(z) = (:“:‘./2/\/‘-.277-. The parameter ay is the proba-
bility of existence of cycle of length k + 2 in the connectivity graph. The a; can
be calculated either by using Monte Carlo [14], or by an analytical approach,
which gives ax ~ 3> [dO[p(0)]*¢'™?, where p(0) is the Fourier transform of the
probability of links, p(C,;). For an RED and FC networks one recover the known
results for rREP = 1 and r¥¢ = 1/(1 - )2 respectively fj.

The theoretical dependence of the information on the load. for FC. MD and
ED networks, with local, small-world and random connections, are plotted in
the fat lines in Fig.1. A comparison between theory and simulation is also given
in Fig.1. It can be seen that both results agree for most w > 0. but theory fails
for w = 0. One reason is that theory uses symmetric constraint, while simulation
was carried out with asymmetric synapsis. Figure 2 shows their maxima i(Amar)
vs. the parameters (w,7). It is seen that the optimal is at w — 1,7 — 0. This
implies that the best topology for information (stationary states) is the extreme
diluted network, with purely random connectivity.

4.2  Simulation: Attractors and Transients

We have studied the behavior of the network varying the range of connectivity
7 and randomness w. We used Eq.(5). Both local and random connections are
asymmetric. The simulation was carried out with N x K = 36 - 10° synapses,
storing an adjacency list as data structure, instead of .J,;. For instance, with
Y = K/N = 001, we used K = 600.N = 6-10%. In [10] the authors use
K =50,N =5-10% which is far from asymptotic limit.

We studied the network by searching for the stability properties and tran-
sients of the neuron dynamics. To look for stability, we started the network at
some pattern (with initial overlap m" = 1.0), and wait until it stays or leave
it after a flag time step t = t; (unless it converges to a fixed point m* before
t = t;). When we check transients, we start with m® = 0.1, and stop the dy-
namics at the time t;. Usually, {; = 20 parallel (all neurons) updates is a large
enough delay for retrieval. Indeed in most case far before the saturation, after
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t; = 4 the network end up in a pattern. however, near Qmaz. even after {; = 100

the network has not yet relaxed.

In first place, we checked for the stability properties of the network: the neu-
ron states start precisely at a given pattern £" (which changes at each learned
step p). The initial overlap is ml = 1.0, so, after tm < 20 time steps in retriev-
ing, the information i(a, m:~.w) for final overlap is calculated. We plot it as a
function of a. and its maximum #mar = i(Qmaz:7-w) is evaluated. Second, we
checked for the retrieval properties: the neuron states start far from a learned
pattern, but inside its basin of attraction, o° € B(€"). The initial configuration
is chosen with distribution: p(a® = £€"[§") = 1+ m")/2, for all neurons (so
we avoid a bias between local/random neighbors). The initial overlap is now
m" = 0.1, and after t; < 20 steps, the information i(a,m;v.w) is calculated.

Each maximal imaz(7:w) is plotted in Fig.4. We see that, for intermediate
values of the randomness parameter 0 < w < 0.3 there is an optimal information
<t to the dilution 7. if dynamics is truncated. We observe that the optimal
iopt = imaz(Yoptiw) is shifted to the left (stronger dilution) when the randomness
w of the network increases. For instance, with w = 0.1, the optimal is at 7 ~ 0.020
while with w = 0.2. it is ¥ ~ 0.005. This result does not change qualitatively
with the flag time, but if the dynamics is truncated early, the optimal v,,, for a
fixed w. is shifted to more connected networks. However, the behavior depends
strongly on the initial condition: respect to mg = 0.1, where the maximal are
pronounced, with my = 1.0. the dependence on the topology becomes almost
flat. We see also that for w > 0.3 there is no intermediate optimal topology. It is
worth to note that the simulation converges to the theoretical results if mg = 1.0

respe

when t — oc.

One can understand this non-monotonic behavior of the information in terms
of the basins of attraction. Random topologies have very deep attractors, spe-
cially if the network is diluted enough, while regular topologies almost lose their
retrieval abilities with dilution. However, since the basins becomes rougher with
dilution, then network takes longer to reach the attractor. Hence, the competi-
tion between depth-roughness is won by the more robust MD networks.

4.3 Simulation with Images

The simulations presented so far use artificial patterns randomly generated. In
order to check if our results are robust against possibly correlations existent
in realistic patterns, we test the algorithm with images. We see that the same
non-monotonic behavior for i,,4.(7) is observed here.

We have checked the results by using data derived from the Waterloo image
database. We are working with square shaped patches. In order to use Hebb-like
non-sparse code binary network and still preserve the structure of the image
we process the images preserving the edges, by applying edge filter. Each pixel
of the patch represents a different neuron. The number of connections is up
to N x K = 3-10" and the feasible connectivities (more than 3 patterns) are
~ > 0.002.
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Fig. 4. Maximal information tmar = i(@mac) vs v, for simulations with N.K = 4.107,
and several w. Initial overlap m® = 1.0 (left) and m° = 0.1 (right); the retricval stops
after ty = 20 steps.

Note that the procedure, strictly speaking. does not guarantee the conditions
for the distribution of €, because neither p(€ = +1) is uniform (due to the
threshold in large blocks). nor &; are uncorrelated (due to image edges).

We are choosing at random the origin of the patch and the image to be
used from the available 12 images. The topology of the network is a ring with
small world topology. The results of the simulation, using Chen filter, are shown
in Fig.3. The optimal connectivity with w = 0.1 and t; = 10 is found to be
Yopt ~ 0.03. The fluctuation now are much larger than with random patterns.
due to correlation and small network size. In the stationary states, t; — oo,
the optimal connectivity remains at Yopt ~ 0.03, with i, ~ 0.165. The results
agree qualitatively with simulation for random patterns, Fig.4, where the initial
overlaps are m® = 0.1 and m” = 1.0 (in Fig.3 it is always m" = 0.3).

5 Conclusions

In this paper we have studied the dependence of the information capacity with
the topology for an attractor ncural network. We calculated the mutual infor-
mation for a Hebb model, for storing binary patterns. varying the connectivity
(7) and randomness (w) paramecters, and obtained the maximal respect to a,
tmar(7,w) = i(@umariy.w). Then we look at the optimal topology. Yopt in the
sense of the information, Zop = fmar (Yope- w). We presented stationary and tran-
sient states. The main result is that larger w always leads to higher information
imur~

From the stability calculations, the stationary optimal topology. is the ex-
tremely diluted (RED) network. Dynamics shows, however, that this is not true:
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we found there is an intermediate optimal 7op, for any fixed 0 < w < 0.3. This
can be understood regarding the shape of the attractors. The ED waits much
longer for the retrieval than more connected networks do, so the neurons can
be trapped in spurious states with vanishing information. We found there is an
intermediate optimal 7,p. Whenever the retrieval is truncated, and it remains
up to the stationary states.

Both in nature and in technological approaches to neural devices, dynamics
is an essential issue for information process. So, an optimized topology holds in
any practical purpose, even if no attempt jon is payed to wiring or other energetic
costs of random links. The reason is a competition between the broadness (larger
storage capacity) and roughness (slower retrieval speed) of the attraction basins.

We believe that the maximization of information respect to the topology
could be a biological criteria (where non-equilibrium phenomena are relevant) to
build real neural networks. We expect that the same dependence should happens
for more structured networks and learning rules.
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